Training Convolutional Neural Networks with Synthesized Data for Object Recognition in Industrial Manufacturing

Jason Li, Per Lage Götvall, Julien Provost, Knut Åkesson

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

7 Zitate (Scopus)

Abstract

Visual tasks such as automated quality control or packaging require machines to be able to detect and identify objects automatically. In recent years object detection systems using deep learning have made significant advancements achieving better scores at a higher performance. However, these methods typically require large amounts of annotated images for training, which are costly and labor intensive to create. Therefore, it is an attractive alternative to generate the training data synthetically using computer-generated imagery (CGI). In this paper, we investigate how to add realistic texture to CAD objects to generate synthetic data for training of an instance segmentation network (Mask R-CNN) for recognition of manufacturing components. The results show that it is possible to create synthetic data with negligible human effort when using simple procedural materials.

OriginalspracheEnglisch
TitelProceedings - 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2019
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten1544-1547
Seitenumfang4
ISBN (elektronisch)9781728103037
DOIs
PublikationsstatusVeröffentlicht - Sept. 2019
Veranstaltung24th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2019 - Zaragoza, Spanien
Dauer: 10 Sept. 201913 Sept. 2019

Publikationsreihe

NameIEEE International Conference on Emerging Technologies and Factory Automation, ETFA
Band2019-September
ISSN (Print)1946-0740
ISSN (elektronisch)1946-0759

Konferenz

Konferenz24th IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 2019
Land/GebietSpanien
OrtZaragoza
Zeitraum10/09/1913/09/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „Training Convolutional Neural Networks with Synthesized Data for Object Recognition in Industrial Manufacturing“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren