Towards Sensor Failure Detection in Ambient Assisted Living: Sensors Correlations

Naney E. Elhady, Julien Provost

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Ambient Assisted Living promotes healthy independent ageing of the elderly at their homes by monitoring their behaviour, and support medical assistance whenever needed. For privacy and acceptance issues, non-intrusive sensors are preferably used. However, such sensors are more prone to produce false positive or negative data. Faulty sensor data could be automatically detected if correlations between sensors can be identified. This paper aims to propose the use of association rule mining to find correlations between binary event-driven sensors installed for monitoring purposes in an apartment. A case study was carried out to validate the approach and investigate the effect of different data mining parameters on the quality of obtained association rules. The results show that correlations could be successfully deduced from unlabelled datasets with no prior expert knowledge on the sensors topology.

OriginalspracheEnglisch
Titel2018 IEEE 14th International Conference on Automation Science and Engineering, CASE 2018
Herausgeber (Verlag)IEEE Computer Society
Seiten378-383
Seitenumfang6
ISBN (elektronisch)9781538635933
DOIs
PublikationsstatusVeröffentlicht - 4 Dez. 2018
Veranstaltung14th IEEE International Conference on Automation Science and Engineering, CASE 2018 - Munich, Deutschland
Dauer: 20 Aug. 201824 Aug. 2018

Publikationsreihe

NameIEEE International Conference on Automation Science and Engineering
Band2018-August
ISSN (Print)2161-8070
ISSN (elektronisch)2161-8089

Konferenz

Konferenz14th IEEE International Conference on Automation Science and Engineering, CASE 2018
Land/GebietDeutschland
OrtMunich
Zeitraum20/08/1824/08/18

Fingerprint

Untersuchen Sie die Forschungsthemen von „Towards Sensor Failure Detection in Ambient Assisted Living: Sensors Correlations“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren