Towards Safety-Aware Pedestrian Detection in Autonomous Systems

Maria Lyssenko, Christoph Gladisch, Christian Heinzemann, Matthias Woehrle, Rudolph Triebel

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

In this paper, we present a framework to assess the quality of a pedestrian detector in an autonomous driving scenario. To do this, we exploit performance metrics from the domain of computer vision on one side and so-called threat metrics from the motion planning domain on the other side. Based on a reachability analysis that accounts for the uncertainty in future motions of other traffic participants, we can determine the worst-case threat from the planning domain and relate it to the corresponding detection from the visual input. Our evaluation results for a RetinaNet on the Argoverse 1.1 [1] dataset show that already a rather simple threat metric such as time-to-collision (TTC) allows to select potentially dangerous interactions between the ego vehicle and a pedestrian when purely vision-based detections fail, even if they are passed to a subsequent object tracker. In addition, our results show that two different DNNs (Deep Neural Networks) with comparable performance differ significantly in the number of critical scenarios that we can identify with our method.

OriginalspracheEnglisch
TitelIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten293-300
Seitenumfang8
ISBN (elektronisch)9781665479271
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022 - Kyoto, Japan
Dauer: 23 Okt. 202227 Okt. 2022

Publikationsreihe

NameIEEE International Conference on Intelligent Robots and Systems
Band2022-October
ISSN (Print)2153-0858
ISSN (elektronisch)2153-0866

Konferenz

Konferenz2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022
Land/GebietJapan
OrtKyoto
Zeitraum23/10/2227/10/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Towards Safety-Aware Pedestrian Detection in Autonomous Systems“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren