Towards Safe AI: Sandboxing DNNs-Based Controllers in Stochastic Games

Bingzhuo Zhong, Hongpeng Cao, Majid Zamani, Marco Caccamo

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

Nowadays, AI-based techniques, such as deep neural networks (DNNs), are widely deployed in autonomous systems for complex mission requirements (e.g., motion planning in robotics). However, DNNs-based controllers are typically very complex, and it is very hard to formally verify their correctness, potentially causing severe risks for safety-critical autonomous systems. In this paper, we propose a construction scheme for a so-called Safe-visor architecture to sandbox DNNs-based controllers. Particularly, we consider the construction under a stochastic game framework to provide a system-level safety guarantee which is robust to noises and disturbances. A supervisor is built to check the control inputs provided by a DNNs-based controller and decide whether to accept them. Meanwhile, a safety advisor is running in parallel to provide fallback control inputs in case the DNNs-based controller is rejected. We demonstrate the proposed approaches on a quadrotor employing an unverified DNNs-based controller.

OriginalspracheEnglisch
TitelAAAI-23 Special Tracks
Redakteure/-innenBrian Williams, Yiling Chen, Jennifer Neville
Herausgeber (Verlag)AAAI Press
Seiten15340-15349
Seitenumfang10
ISBN (elektronisch)9781577358800
PublikationsstatusVeröffentlicht - 27 Juni 2023
Veranstaltung37th AAAI Conference on Artificial Intelligence, AAAI 2023 - Washington, USA/Vereinigte Staaten
Dauer: 7 Feb. 202314 Feb. 2023

Publikationsreihe

NameProceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023
Band37

Konferenz

Konferenz37th AAAI Conference on Artificial Intelligence, AAAI 2023
Land/GebietUSA/Vereinigte Staaten
OrtWashington
Zeitraum7/02/2314/02/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Towards Safe AI: Sandboxing DNNs-Based Controllers in Stochastic Games“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren