Towards recognition-based variational segmentation using shape priors and dynamic labeling

Daniel Cremers, Nir Sochen, Christoph Schnörr

Publikation: Beitrag in Buch/Bericht/KonferenzbandKapitelBegutachtung

112 Zitate (Scopus)

Abstract

We propose a novel variational approach based on a level set formulation of the Mumford-Shah functional and shape priors. We extend the functional by a labeling function which indicates image regions in which the shape prior is enforced. By minimizing the proposed functional with respect to both the level set function and the labeling function, the algorithm selects image regions where it is favorable to enforce the shape prior. By this, the approach permits to segment multiple independent objects in an image, and to discriminate familiar objects from unfamiliar ones by means of the labeling function. Numerical results demonstrate the performance of our approach.

OriginalspracheEnglisch
TitelLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Redakteure/-innenLewis D. Griffin, Martin Lillholm
Herausgeber (Verlag)Springer Verlag
Seiten388-400
Seitenumfang13
ISBN (Print)354040368X
DOIs
PublikationsstatusVeröffentlicht - 2003
Extern publiziertJa

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band2695
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Fingerprint

Untersuchen Sie die Forschungsthemen von „Towards recognition-based variational segmentation using shape priors and dynamic labeling“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren