Towards in silico CLIP-seq: predicting protein-RNA interaction via sequence-to-signal learning

Marc Horlacher, Nils Wagner, Lambert Moyon, Klara Kuret, Nicolas Goedert, Marco Salvatore, Jernej Ule, Julien Gagneur, Ole Winther, Annalisa Marsico

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

6 Zitate (Scopus)

Abstract

We present RBPNet, a novel deep learning method, which predicts CLIP-seq crosslink count distribution from RNA sequence at single-nucleotide resolution. By training on up to a million regions, RBPNet achieves high generalization on eCLIP, iCLIP and miCLIP assays, outperforming state-of-the-art classifiers. RBPNet performs bias correction by modeling the raw signal as a mixture of the protein-specific and background signal. Through model interrogation via Integrated Gradients, RBPNet identifies predictive sub-sequences that correspond to known and novel binding motifs and enables variant-impact scoring via in silico mutagenesis. Together, RBPNet improves imputation of protein-RNA interactions, as well as mechanistic interpretation of predictions.

OriginalspracheEnglisch
Aufsatznummer180
FachzeitschriftGenome Biology
Jahrgang24
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - Dez. 2023

Fingerprint

Untersuchen Sie die Forschungsthemen von „Towards in silico CLIP-seq: predicting protein-RNA interaction via sequence-to-signal learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren