Towards Gas Identification in Unknown Mixtures Using an Electronic Nose with One-Class Learning

Han Fan, Daniel Jonsson, Erik Schaffernicht, Achim J. Lilienthal

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

Gas identification using an electronic nose (e-nose) typically relies on a multi-class classifier trained with extensive data of a limited set of target analytes. Usually, classification performance degrades in the presence of mixtures that include interferents not represented in the training data. This issue limits the applicability of e-noses in real-world scenarios where interferents are a priori unknown. This paper investigates the feasibility of tackling this particular gas identification problem using one-class learning. We propose several training strategies for a one-class support vector machine to deal with gas mixtures composed of a target analyte and an interferent at different concentration levels. Our evaluation indicates that accurate identification of the presence of a target analyte is achievable if it is dominant in a mixture. For interferent-dominant mixtures, extensive training is required, which implies that an improvement in the generalization ability of the one-class model is needed.

OriginalspracheEnglisch
TitelInternational Symposium on Olfaction and Electronic Nose, ISOEN 2022 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9781665458603
DOIs
PublikationsstatusVeröffentlicht - 2022
Extern publiziertJa
Veranstaltung2022 IEEE International Symposium on Olfaction and Electronic Nose, ISOEN 2022 - Aveiro, Portugal
Dauer: 29 Mai 20221 Juni 2022

Publikationsreihe

NameInternational Symposium on Olfaction and Electronic Nose, ISOEN 2022 - Proceedings

Konferenz

Konferenz2022 IEEE International Symposium on Olfaction and Electronic Nose, ISOEN 2022
Land/GebietPortugal
OrtAveiro
Zeitraum29/05/221/06/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Towards Gas Identification in Unknown Mixtures Using an Electronic Nose with One-Class Learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren