Towards Engineered Safe AI with Modular Concept Models

Lena Heidemann, Iwo Kurzidem, Maureen Monnet, Karsten Roscher, Stephan Günnemann

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

The inherent complexity and uncertainty of Machine Learning (ML) makes it difficult for ML-based Computer Vision (CV) approaches to become prevalent in safety-critical domains like autonomous driving, despite their high performance. A crucial challenge in these domains is the safety assurance of ML-based systems. To address this, recent safety standardization in the automotive domain has introduced an ML safety lifecycle following an iterative development process. While this approach facilitates safety assurance, its iterative nature requires frequent adaptation and optimization of the ML function, which might include costly retraining of the ML model and is not guaranteed to converge to a safe AI solution. In this paper, we propose a modular ML approach which allows for more efficient and targeted measures to each of the modules and process steps. Each module of the modular concept model represents one visual concept and is aggregated with the other modules' outputs into a task output. The design choices of a modular concept model can be categorized into the selection of the concept modules, the aggregation of their output and the training of the concept modules. Using the example of traffic sign classification, we present each step of the involved design choices and the corresponding targeted measures to take in an iterative development process for engineering safe AI.

OriginalspracheEnglisch
TitelProceedings - 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024
Herausgeber (Verlag)IEEE Computer Society
Seiten3564-3573
Seitenumfang10
ISBN (elektronisch)9798350365474
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024 - Seattle, USA/Vereinigte Staaten
Dauer: 16 Juni 202422 Juni 2024

Publikationsreihe

NameIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
ISSN (Print)2160-7508
ISSN (elektronisch)2160-7516

Konferenz

Konferenz2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2024
Land/GebietUSA/Vereinigte Staaten
OrtSeattle
Zeitraum16/06/2422/06/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Towards Engineered Safe AI with Modular Concept Models“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren