Towards Efficient MCMC Sampling in Bayesian Neural Networks by Exploiting Symmetry

Jonas Gregor Wiese, Lisa Wimmer, Theodore Papamarkou, Bernd Bischl, Stephan Günnemann, David Rügamer

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

3 Zitate (Scopus)

Abstract

Bayesian inference in deep neural networks is challenging due to the high-dimensional, strongly multi-modal parameter posterior density landscape. Markov chain Monte Carlo approaches asymptotically recover the true posterior but are considered prohibitively expensive for large modern architectures. Local methods, which have emerged as a popular alternative, focus on specific parameter regions that can be approximated by functions with tractable integrals. While these often yield satisfactory empirical results, they fail, by definition, to account for the multi-modality of the parameter posterior. Such coarse approximations can be detrimental in practical applications, notably safety-critical ones. In this work, we argue that the dilemma between exact-but-unaffordable and cheap-but-inexact approaches can be mitigated by exploiting symmetries in the posterior landscape. These symmetries, induced by neuron interchangeability and certain activation functions, manifest in different parameter values leading to the same functional output value. We show theoretically that the posterior predictive density in Bayesian neural networks can be restricted to a symmetry-free parameter reference set. By further deriving an upper bound on the number of Monte Carlo chains required to capture the functional diversity, we propose a straightforward approach for feasible Bayesian inference. Our experiments suggest that efficient sampling is indeed possible, opening up a promising path to accurate uncertainty quantification in deep learning.

OriginalspracheEnglisch
TitelMachine Learning and Knowledge Discovery in Databases
UntertitelResearch Track - European Conference, ECML PKDD 2023, Proceedings
Redakteure/-innenDanai Koutra, Claudia Plant, Manuel Gomez Rodriguez, Elena Baralis, Francesco Bonchi
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten459-474
Seitenumfang16
ISBN (Print)9783031434112
DOIs
PublikationsstatusVeröffentlicht - 2023
VeranstaltungEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2023 - Turin, Italien
Dauer: 18 Sept. 202322 Sept. 2023

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band14169 LNAI
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

KonferenzEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2023
Land/GebietItalien
OrtTurin
Zeitraum18/09/2322/09/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Towards Efficient MCMC Sampling in Bayesian Neural Networks by Exploiting Symmetry“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren