Towards AutoQML: A Cloud-Based Automated Circuit Architecture Search Framework

Raul Berganza Gomez, Corey O'Meara, Giorgio Cortiana, Christian B. Mendl, Juan Bernabe-Moreno

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

3 Zitate (Scopus)

Abstract

The learning process of classical machine learning algorithms is tuned by hyperparameters that need to be customized to best learn and generalize from an input dataset. In recent years, Quantum Machine Learning (QML) has been gaining traction as a possible application of quantum computing which may provide quantum advantage in the future. However, quantum versions of classical machine learning algorithms introduce a plethora of additional parameters and circuit variations that have their own intricacies in being tuned.In this work, we take the first steps towards Automated Quantum Machine Learning (AutoQML). We propose a concrete description of the problem, and then develop a classical-quantum hybrid cloud architecture that allows for parallelized hyperparameter exploration and model training.As an application use-case, we train a quantum Generative Adversarial neural Network (qGAN) to generate energy prices that follow a known historic data distribution. Such a QML model can be used for various applications in the energy economics sector.

OriginalspracheEnglisch
Titel2022 IEEE 19th International Conference on Software Architecture Companion, ICSA-C 2022
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten129-136
Seitenumfang8
ISBN (elektronisch)9781665494939
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung19th IEEE International Conference on Software Architecture Companion, ICSA-C 2022 - Honolulu, USA/Vereinigte Staaten
Dauer: 12 März 202215 März 2022

Publikationsreihe

Name2022 IEEE 19th International Conference on Software Architecture Companion, ICSA-C 2022

Konferenz

Konferenz19th IEEE International Conference on Software Architecture Companion, ICSA-C 2022
Land/GebietUSA/Vereinigte Staaten
OrtHonolulu
Zeitraum12/03/2215/03/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Towards AutoQML: A Cloud-Based Automated Circuit Architecture Search Framework“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren