Toward semantic attributes in dictionary learning and non-negative matrix factorization

Mohammadreza Babaee, Thomas Wolf, Gerhard Rigoll

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

4 Zitate (Scopus)

Abstract

Binary label information is widely used semantic information in discriminative dictionary learning and non-negative matrix factorization. A Discriminative Dictionary Learning (DDL) algorithm uses the label of some data samples to enhance the discriminative property of sparse signals. A discriminative Non-negative Matrix Factorization (NMF) utilizes label information in learning discriminative bases. All these technique are using binary label information as semantic information. In contrast to such binary attributes or labels, relative attributes contain richer semantic information where the data is annotated with the strength of the attributes. In this paper, we utilize the relative attributes of training data in non-negative matrix factorization and dictionary learning. Precisely, we learn rank functions (one for each predefined attribute) to rank the images based on predefined semantic attributes. The strength of each attribute in a data sample is used as semantic information. To assess the quality of the obtained signals, we apply k-means clustering and measure the performance for clustering. Experimental results conducted on three datasets, namely PubFig (16), OSR (24) and Shoes (15) confirm that the proposed approach outperforms the state-of-the-art discriminative algorithms.

OriginalspracheEnglisch
Seiten (von - bis)172-178
Seitenumfang7
FachzeitschriftPattern Recognition Letters
Jahrgang80
DOIs
PublikationsstatusVeröffentlicht - 1 Sept. 2016

Fingerprint

Untersuchen Sie die Forschungsthemen von „Toward semantic attributes in dictionary learning and non-negative matrix factorization“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren