TY - JOUR
T1 - Toward semantic attributes in dictionary learning and non-negative matrix factorization
AU - Babaee, Mohammadreza
AU - Wolf, Thomas
AU - Rigoll, Gerhard
N1 - Publisher Copyright:
© 2016 Elsevier B.V.
PY - 2016/9/1
Y1 - 2016/9/1
N2 - Binary label information is widely used semantic information in discriminative dictionary learning and non-negative matrix factorization. A Discriminative Dictionary Learning (DDL) algorithm uses the label of some data samples to enhance the discriminative property of sparse signals. A discriminative Non-negative Matrix Factorization (NMF) utilizes label information in learning discriminative bases. All these technique are using binary label information as semantic information. In contrast to such binary attributes or labels, relative attributes contain richer semantic information where the data is annotated with the strength of the attributes. In this paper, we utilize the relative attributes of training data in non-negative matrix factorization and dictionary learning. Precisely, we learn rank functions (one for each predefined attribute) to rank the images based on predefined semantic attributes. The strength of each attribute in a data sample is used as semantic information. To assess the quality of the obtained signals, we apply k-means clustering and measure the performance for clustering. Experimental results conducted on three datasets, namely PubFig (16), OSR (24) and Shoes (15) confirm that the proposed approach outperforms the state-of-the-art discriminative algorithms.
AB - Binary label information is widely used semantic information in discriminative dictionary learning and non-negative matrix factorization. A Discriminative Dictionary Learning (DDL) algorithm uses the label of some data samples to enhance the discriminative property of sparse signals. A discriminative Non-negative Matrix Factorization (NMF) utilizes label information in learning discriminative bases. All these technique are using binary label information as semantic information. In contrast to such binary attributes or labels, relative attributes contain richer semantic information where the data is annotated with the strength of the attributes. In this paper, we utilize the relative attributes of training data in non-negative matrix factorization and dictionary learning. Precisely, we learn rank functions (one for each predefined attribute) to rank the images based on predefined semantic attributes. The strength of each attribute in a data sample is used as semantic information. To assess the quality of the obtained signals, we apply k-means clustering and measure the performance for clustering. Experimental results conducted on three datasets, namely PubFig (16), OSR (24) and Shoes (15) confirm that the proposed approach outperforms the state-of-the-art discriminative algorithms.
KW - Attributes
KW - Dictionary
KW - Learning
KW - Matrix factorization
UR - http://www.scopus.com/inward/record.url?scp=84978427235&partnerID=8YFLogxK
U2 - 10.1016/j.patrec.2016.06.020
DO - 10.1016/j.patrec.2016.06.020
M3 - Article
AN - SCOPUS:84978427235
SN - 0167-8655
VL - 80
SP - 172
EP - 178
JO - Pattern Recognition Letters
JF - Pattern Recognition Letters
ER -