Toward Certification of Machine-Learning Systems for Low Criticality Airborne Applications

Konstantin Dmitriev, Johann Schumann, Florian Holzapfel

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

13 Zitate (Scopus)

Abstract

The exceptional progress in the field of machine learning (ML) in recent years has attracted a lot of interest in using this technology in aviation. Possible airborne applications of ML include safety-critical functions, which must be developed in compliance with rigorous certification standards of the aviation industry. Current certification standards for the aviation industry were developed prior to the ML renaissance without taking specifics of ML technology into account. There are some fundamental incompatibilities between traditional design assurance approaches and certain aspects of ML-based systems. In this paper, we analyze the current airborne certification standards and show that all objectives of the standards can be achieved for a low-criticality ML-based system if certain assumptions about ML development workflow are applied.

OriginalspracheEnglisch
Titel40th Digital Avionics Systems Conference, DASC 2021 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9781665434201
DOIs
PublikationsstatusVeröffentlicht - 2021
Veranstaltung40th IEEE/AIAA Digital Avionics Systems Conference, DASC 2021 - San Antonio, USA/Vereinigte Staaten
Dauer: 3 Okt. 20217 Okt. 2021

Publikationsreihe

NameAIAA/IEEE Digital Avionics Systems Conference - Proceedings
Band2021-October
ISSN (Print)2155-7195
ISSN (elektronisch)2155-7209

Konferenz

Konferenz40th IEEE/AIAA Digital Avionics Systems Conference, DASC 2021
Land/GebietUSA/Vereinigte Staaten
OrtSan Antonio
Zeitraum3/10/217/10/21

Fingerprint

Untersuchen Sie die Forschungsthemen von „Toward Certification of Machine-Learning Systems for Low Criticality Airborne Applications“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren