To Adapt or Not to Adapt? Real-Time Adaptation for Semantic Segmentation

Marc Botet Colomer, Pier Luigi Dovesi, Theodoros Panagiotakopoulos, Joao Frederico Carvalho, Linus Härenstam-Nielsen, Hossein Azizpour, Hedvig Kjellström, Daniel Cremers, Matteo Poggi

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

The goal of Online Domain Adaptation for semantic segmentation is to handle unforeseeable domain changes that occur during deployment, like sudden weather events. However, the high computational costs associated with brute-force adaptation make this paradigm unfeasible for real-world applications. In this paper we propose HAMLET, a Hardware-Aware Modular Least Expensive Training framework for real-time domain adaptation. Our approach includes a hardware-aware back-propagation orchestration agent (HAMT) and a dedicated domain-shift detector that enables active control over when and how the model is adapted (LT). Thanks to these advancements, our approach is capable of performing semantic segmentation while simultaneously adapting at more than 29FPS on a single consumer-grade GPU. Our framework's encouraging accuracy and speed trade-off is demonstrated on OnDA and SHIFT benchmarks through experimental results.

OriginalspracheEnglisch
TitelProceedings - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten16502-16513
Seitenumfang12
ISBN (elektronisch)9798350307184
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023 - Paris, Frankreich
Dauer: 2 Okt. 20236 Okt. 2023

Publikationsreihe

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Konferenz

Konferenz2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
Land/GebietFrankreich
OrtParis
Zeitraum2/10/236/10/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „To Adapt or Not to Adapt? Real-Time Adaptation for Semantic Segmentation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren