Time-varying pedestrian flow models for service robots

Tomas Vintr, Sergi Molina, Ransalu Senanayake, George Broughton, Zhi Yan, Jiri Ulrich, Tomasz Piotr Kucner, Chittaranjan Srinivas Swaminathan, Filip Majer, Maria Stachova, Achim J. Lilienthal, Tomas Krajnik

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

14 Zitate (Scopus)

Abstract

We present a human-centric spatiotemporal model for service robots operating in densely populated environments for long time periods. The method integrates observations of pedestrians performed by a mobile robot at different locations and times into a memory efficient model, that represents the spatial layout of natural pedestrian flows and how they change over time. To represent temporal variations of the observed flows, our method does not model the time in a linear fashion, but by several dimensions wrapped into themselves. This representation of time can capture long-term (i.e. days to weeks) periodic patterns of peoples' routines and habits. Knowledge of these patterns allows making long-term predictions of future human presence and walking directions, which can support mobile robot navigation in human-populated environments. Using datasets gathered for several weeks, we compare the model to state-of-the-art methods for pedestrian flow modelling.

OriginalspracheEnglisch
Titel2019 European Conference on Mobile Robots, ECMR 2019 - Proceedings
Redakteure/-innenLibor Preucil, Sven Behnke, Miroslav Kulich
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9781728136059
DOIs
PublikationsstatusVeröffentlicht - Sept. 2019
Extern publiziertJa
Veranstaltung2019 European Conference on Mobile Robots, ECMR 2019 - Prague, Tschechische Republik
Dauer: 4 Sept. 20196 Sept. 2019

Publikationsreihe

Name2019 European Conference on Mobile Robots, ECMR 2019 - Proceedings

Konferenz

Konferenz2019 European Conference on Mobile Robots, ECMR 2019
Land/GebietTschechische Republik
OrtPrague
Zeitraum4/09/196/09/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „Time-varying pedestrian flow models for service robots“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren