Time-fractional Cahn–Hilliard equation: Well-posedness, degeneracy, and numerical solutions

Marvin Fritz, Mabel L. Rajendran, Barbara Wohlmuth

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

14 Zitate (Scopus)

Abstract

In this paper, we derive the time-fractional Cahn–Hilliard equation from continuum mixture theory with a modification of Fick's law of diffusion. This model describes the process of phase separation with nonlocal memory effects. We analyze the existence, uniqueness, and regularity of weak solutions of the time-fractional Cahn–Hilliard equation. In this regard, we consider degenerating mobility functions and free energies of Landau, Flory–Huggins and double-obstacle type. We apply the Faedo–Galerkin method to the system, derive energy estimates, and use compactness theorems to pass to the limit in the discrete form. In order to compensate for the missing chain rule of fractional derivatives, we prove a fractional chain inequality for semiconvex functions. The work concludes with numerical simulations and a sensitivity analysis showing the influence of the fractional power. Here, we consider a convolution quadrature scheme for the time-fractional component, and use a mixed finite element method for the space discretization.

OriginalspracheEnglisch
Seiten (von - bis)66-87
Seitenumfang22
FachzeitschriftComputers and Mathematics with Applications
Jahrgang108
DOIs
PublikationsstatusVeröffentlicht - 15 Feb. 2022

Fingerprint

Untersuchen Sie die Forschungsthemen von „Time-fractional Cahn–Hilliard equation: Well-posedness, degeneracy, and numerical solutions“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren