Tight bounds for online coloring of basic graph classes

Susanne Albers, Sebastian Schraink

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

We resolve a number of long-standing open problems in online graph coloring. More specifically, we develop tight lower bounds on the performance of online algorithms for fundamental graph classes. An important contribution is that our bounds also hold for randomized online algorithms, for which hardly any results were known. Technically, we construct lower bounds for chordal graphs. The constructions then allow us to derive results on the performance of randomized online algorithms for the following further graph classes: Trees, planar, bipartite, inductive, bounded-Treewidth and disk graphs. It shows that the best competitive ratio of both deterministic and randomized online algorithms is ϵ(log n), where n is the number of vertices of a graph. Furthermore, we prove that this guarantee cannot be improved if an online algorithm has a lookahead of size O(n/ log n) or access to a reordering buffer of size n1-ϵ, for any 0 < ϵ ≤ 1. A consequence of our results is that, for all of the above mentioned graph classes except bipartite graphs, the natural First Fit coloring algorithm achieves an optimal performance, up to constant factors, among deterministic and randomized online algorithms.

OriginalspracheEnglisch
Titel25th European Symposium on Algorithms, ESA 2017
Redakteure/-innenChristian Sohler, Christian Sohler, Kirk Pruhs
Herausgeber (Verlag)Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (elektronisch)9783959770491
DOIs
PublikationsstatusVeröffentlicht - 1 Sept. 2017
Veranstaltung25th European Symposium on Algorithms, ESA 2017 - Vienna, Österreich
Dauer: 4 Sept. 20176 Sept. 2017

Publikationsreihe

NameLeibniz International Proceedings in Informatics, LIPIcs
Band87
ISSN (Print)1868-8969

Konferenz

Konferenz25th European Symposium on Algorithms, ESA 2017
Land/GebietÖsterreich
OrtVienna
Zeitraum4/09/176/09/17

Fingerprint

Untersuchen Sie die Forschungsthemen von „Tight bounds for online coloring of basic graph classes“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren