TY - GEN
T1 - Three-dimensional optoacoustic mesoscopy of the tumor heterogeneity in vivo using high depth-to-resolution multispectral optoacoustic tomography
AU - Li, Jiao
AU - Zhang, Songhe
AU - Chekkoury, Andrei
AU - Glasl, Sarah
AU - Vetschera, Paul
AU - Koberstein-Schwarz, Benno
AU - Omar, Murad
AU - Ntziachristos, Vasilis
N1 - Publisher Copyright:
© 2017 SPIE.
PY - 2017
Y1 - 2017
N2 - Multispectral optoacoustic mesoscopy (MSOM) has been recently introduced for cancer imaging, it has the potential for high resolution imaging of cancer development in vivo, at depths beyond the diffusion limit. Based on spectral features, optoacoustic imaging is capable of visualizing angiogenesis and imaging cancer heterogeneity of malignant tumors through endogenous hemoglobin. However, high-resolution structural and functional imaging of whole tumor mass is limited by modest penetration and image quality, due to the insufficient capability of ultrasound detectors and the twodimensional scan geometry. In this study, we introduce a novel multi-spectral optoacoustic mesoscopy (MSOM) for imaging subcutaneous or orthotopic tumors implanted in lab mice, with the high-frequency ultrasound linear array and a conical scanning geometry. Detailed volumetric images of vasculature and oxygen saturation of tissue in the entire tumors are obtained in vivo, at depths up to 10 mm with the desirable spatial resolutions approaching 70μm. This unprecedented performance enables the visualization of vasculature morphology and hypoxia conditions has been verified with ex vivo studies. These findings demonstrate the potential of MSOM for preclinical oncological studies in deep solid tumors to facilitate the characterization of tumor's angiogenesis and the evaluation of treatment strategies.
AB - Multispectral optoacoustic mesoscopy (MSOM) has been recently introduced for cancer imaging, it has the potential for high resolution imaging of cancer development in vivo, at depths beyond the diffusion limit. Based on spectral features, optoacoustic imaging is capable of visualizing angiogenesis and imaging cancer heterogeneity of malignant tumors through endogenous hemoglobin. However, high-resolution structural and functional imaging of whole tumor mass is limited by modest penetration and image quality, due to the insufficient capability of ultrasound detectors and the twodimensional scan geometry. In this study, we introduce a novel multi-spectral optoacoustic mesoscopy (MSOM) for imaging subcutaneous or orthotopic tumors implanted in lab mice, with the high-frequency ultrasound linear array and a conical scanning geometry. Detailed volumetric images of vasculature and oxygen saturation of tissue in the entire tumors are obtained in vivo, at depths up to 10 mm with the desirable spatial resolutions approaching 70μm. This unprecedented performance enables the visualization of vasculature morphology and hypoxia conditions has been verified with ex vivo studies. These findings demonstrate the potential of MSOM for preclinical oncological studies in deep solid tumors to facilitate the characterization of tumor's angiogenesis and the evaluation of treatment strategies.
KW - Angiogenesis
KW - Hypoxemia
KW - In vivo tumor imaging
KW - Multi-spectral
KW - Optoacoustic mesoscopy
UR - http://www.scopus.com/inward/record.url?scp=85019239923&partnerID=8YFLogxK
U2 - 10.1117/12.2253047
DO - 10.1117/12.2253047
M3 - Conference contribution
AN - SCOPUS:85019239923
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Photons Plus Ultrasound
A2 - Oraevsky, Alexander A.
A2 - Wang, Lihong V.
PB - SPIE
T2 - Photons Plus Ultrasound: Imaging and Sensing 2017
Y2 - 29 January 2017 through 1 February 2017
ER -