TY - GEN
T1 - Thermo-economic evaluation of novel flexible caes/ccpp concept
AU - Herrmann, Stephan
AU - Kahlert, Steffen
AU - Wuerth, Manuel
AU - Spliethoff, Hartmut
N1 - Publisher Copyright:
Copyright © 2016 by ASME.
PY - 2016
Y1 - 2016
N2 - This paper presents the results of a thermodynamic and economic evaluation of a novel hybrid combination of a compressed air energy storage and a combined cycle power plant. The new cycle is modeled on basis of a GE LM6000 gas turbine model, an adiabatic compressor model, an air expander and a conventional dual pressure HRSG configuration. Furthermore, a detailed design of the recuperator is presented. With the simulated components, a storage efficiency of 60% is reached. In CHP configuration the total efficiency of the plant reaches up to 86.2%. The thermodynamic and economic performance is compared to a conventional LM6000 combined cycle. For the economic evaluation the German electricity dayahead prices and average gas price of the year 2014 are used. Overall it is found that the CAES/CCPP concept exhibits far more operation hours per year and a higher profit margin than the compared CCPP. Taking into account the investment and operational costs, especially with steam extraction the net present value of the novel cycle is higher than that of the combined cycle, despite the challenging market environment for storage technologies in Germany.
AB - This paper presents the results of a thermodynamic and economic evaluation of a novel hybrid combination of a compressed air energy storage and a combined cycle power plant. The new cycle is modeled on basis of a GE LM6000 gas turbine model, an adiabatic compressor model, an air expander and a conventional dual pressure HRSG configuration. Furthermore, a detailed design of the recuperator is presented. With the simulated components, a storage efficiency of 60% is reached. In CHP configuration the total efficiency of the plant reaches up to 86.2%. The thermodynamic and economic performance is compared to a conventional LM6000 combined cycle. For the economic evaluation the German electricity dayahead prices and average gas price of the year 2014 are used. Overall it is found that the CAES/CCPP concept exhibits far more operation hours per year and a higher profit margin than the compared CCPP. Taking into account the investment and operational costs, especially with steam extraction the net present value of the novel cycle is higher than that of the combined cycle, despite the challenging market environment for storage technologies in Germany.
UR - http://www.scopus.com/inward/record.url?scp=84991384378&partnerID=8YFLogxK
U2 - 10.1115/GT2016-57254
DO - 10.1115/GT2016-57254
M3 - Conference contribution
AN - SCOPUS:84991384378
T3 - Proceedings of the ASME Turbo Expo
BT - Coal, Biomass and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, GT 2016
Y2 - 13 June 2016 through 17 June 2016
ER -