There exists no always convergent algorithm for the calculation of spectral factorization, Wiener filter, and Hilbert transform

Holger Boche, Volker Pohl

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

8 Zitate (Scopus)

Abstract

Spectral factorization, Wiener filtering, and many other important operations in information theory and signal processing can be lead back to a Hilbert transform and a Poisson integral. Whereas the Poisson integral causes generally no problems, the Hilbert transform has a much more complicated behavior. This paper investigates the possibility to calculate the Hilbert transform f̃ of a given continuous function f based on a finite set of sampling points of f. It shows that even if f is continuous, no linear approximation operator exists which approximates f arbitrary well from a finite number of sampling points of f, in general. Moreover, the paper characterizes the set of all functions for which such linear approximation operators exist and discusses some consequences for practical applications.

OriginalspracheEnglisch
TitelProceedings - 2006 IEEE International Symposium on Information Theory, ISIT 2006
Seiten118-122
Seitenumfang5
DOIs
PublikationsstatusVeröffentlicht - 2006
Extern publiziertJa
Veranstaltung2006 IEEE International Symposium on Information Theory, ISIT 2006 - Seattle, WA, USA/Vereinigte Staaten
Dauer: 9 Juli 200614 Juli 2006

Publikationsreihe

NameIEEE International Symposium on Information Theory - Proceedings
ISSN (Print)2157-8101

Konferenz

Konferenz2006 IEEE International Symposium on Information Theory, ISIT 2006
Land/GebietUSA/Vereinigte Staaten
OrtSeattle, WA
Zeitraum9/07/0614/07/06

Fingerprint

Untersuchen Sie die Forschungsthemen von „There exists no always convergent algorithm for the calculation of spectral factorization, Wiener filter, and Hilbert transform“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren