The use of de-identification methods for secure and privacy-enhancing big data analytics in cloud environments

Gloria Bondel, Gonzalo Munilla Garrido, Kevin Baumer, Florian Matthes

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

Big data analytics are interlinked with distributed processing frameworks and distributed database systems, which often make use of cloud computing services providing the necessary infrastructure. However, storing sensitive data in public clouds leads to security and privacy issues, since the cloud service presents a central point of attack for external adversaries as well as for administrators and other parties which could obtain necessary privileges from the cloud service provider. To enable data security and privacy in such a setting, we argue that solutions using de-identification methods are most suitable. Thus, this position paper presents the starting point for our future work aiming at the development of a privacy-preserving tool based on de-identification methods to meet security and privacy requirements while simultaneously enabling data processing.

OriginalspracheEnglisch
TitelICEIS 2020 - Proceedings of the 22nd International Conference on Enterprise Information Systems
Redakteure/-innenJoaquim Filipe, Michal Smialek, Alexander Brodsky, Slimane Hammoudi
Herausgeber (Verlag)SciTePress
Seiten338-344
Seitenumfang7
ISBN (elektronisch)9789897584237
DOIs
PublikationsstatusVeröffentlicht - 2020
Veranstaltung22nd International Conference on Enterprise Information Systems, ICEIS 2020 - Virtual, Online
Dauer: 5 Mai 20207 Mai 2020

Publikationsreihe

NameICEIS 2020 - Proceedings of the 22nd International Conference on Enterprise Information Systems
Band2

Konferenz

Konferenz22nd International Conference on Enterprise Information Systems, ICEIS 2020
OrtVirtual, Online
Zeitraum5/05/207/05/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „The use of de-identification methods for secure and privacy-enhancing big data analytics in cloud environments“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren