The stable set problem in graphs with bounded genus and bounded odd cycle packing number

Michele Conforti, Samuel Fiorini, Tony Huynh, Gwenaël Joret, Stefan Weltge

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

17 Zitate (Scopus)

Abstract

Consider the family of graphs without k node-disjoint odd cycles, where k is a constant. Determining the complexity of the stable set problem for such graphs G is a long-standing problem. We give a polynomial-time algorithm for the case that G can be further embedded in a (possibly nonorientable) surface of bounded genus. Moreover, we obtain polynomial-size extended formulations for the respective stable set polytopes. To this end, we show that 2-sided odd cycles satisfy the Erdos-Pósa property in graphs embedded in a fixed surface. This extends the fact that odd cycles satisfy the Erdos-Pósa property in graphs embedded in a fixed orientable surface (Kawarabayashi & Nakamoto, 2007). Eventually, our findings allow us to reduce the original problem to the problem of finding a minimum-cost non-negative integer circulation of a certain homology class, which turns out to be efficiently solvable in our case.

OriginalspracheEnglisch
Titel31st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2020
Redakteure/-innenShuchi Chawla
Herausgeber (Verlag)Association for Computing Machinery
Seiten2896-2915
Seitenumfang20
ISBN (elektronisch)9781611975994
DOIs
PublikationsstatusVeröffentlicht - 2020
Veranstaltung31st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2020 - Salt Lake City, USA/Vereinigte Staaten
Dauer: 5 Jan. 20208 Jan. 2020

Publikationsreihe

NameProceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
Band2020-January
ISSN (Print)1071-9040
ISSN (elektronisch)1557-9468

Konferenz

Konferenz31st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2020
Land/GebietUSA/Vereinigte Staaten
OrtSalt Lake City
Zeitraum5/01/208/01/20

Fingerprint

Untersuchen Sie die Forschungsthemen von „The stable set problem in graphs with bounded genus and bounded odd cycle packing number“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren