The Probabilistic Robot Kinematics Model and its Application to Sensor Fusion

Lukas Meyer, Klaus H. Strobl, Rudolph Triebel

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

1 Zitat (Scopus)

Abstract

Robots with elasticity in structural components can suffer from undesired end-effector positioning imprecision, which exceeds the accuracy requirements for successful manipulation. We present the Probabilistic-Product-Of-Exponentials robot model, a novel approach for kinematic modeling of robots. It does not only consider the robot's deterministic geometry but additionally models time-varying and configuration-dependent errors in a probabilistic way. Our robot model allows to propagate the errors along the kinematic chain and to compute their influence on the end-effector pose. We apply this model in the context of sensor fusion for manipulator pose correction for two different robotic systems. The results of a simulation study, as well as of an experiment, demonstrate that probabilistic configuration-dependent error modeling of the robot kinematics is crucial in improving pose estimation results.

OriginalspracheEnglisch
TitelIEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten3263-3270
Seitenumfang8
ISBN (elektronisch)9781665479271
DOIs
PublikationsstatusVeröffentlicht - 2022
Extern publiziertJa
Veranstaltung2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022 - Kyoto, Japan
Dauer: 23 Okt. 202227 Okt. 2022

Publikationsreihe

NameIEEE International Conference on Intelligent Robots and Systems
Band2022-October
ISSN (Print)2153-0858
ISSN (elektronisch)2153-0866

Konferenz

Konferenz2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022
Land/GebietJapan
OrtKyoto
Zeitraum23/10/2227/10/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „The Probabilistic Robot Kinematics Model and its Application to Sensor Fusion“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren