The neurogram matching similarity index (NMSI) for the assessment of similarities among neurograms

Michael Drews, Michele Nicoletti, Werner Hemmert, Stefano Rini

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

In this paper a new similarity index for neurograms is proposed. This index is inspired by the Needleman-Wunsch algorithm which determines the minimum number of operations to transform a vector into another in terms of insertions, deletions and substitutions. The Needleman-Wunsch algorithm can be extended to the two dimensional case and the number of transformations required to change a matrix into another is used to define a measure of similarity. This similarity measure is applied to neurograms and optimized to perform prediction of speech intelligibility in noise. Word recognition scores for for speech samples in noise are evaluated using the proposed similarity index, showing a clear improvement in speech intelligibility estimation with respect to other neurogram similarity metrics in the literature. The proposed similarity index is not restricted to a certain time resolution and could serve to evaluate neurogram similarity with respect to temporal fine structure in future.

OriginalspracheEnglisch
Titel2013 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2013 - Proceedings
Seiten1162-1166
Seitenumfang5
DOIs
PublikationsstatusVeröffentlicht - 18 Okt. 2013
Veranstaltung2013 38th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2013 - Vancouver, BC, Kanada
Dauer: 26 Mai 201331 Mai 2013

Publikationsreihe

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (Print)1520-6149

Konferenz

Konferenz2013 38th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2013
Land/GebietKanada
OrtVancouver, BC
Zeitraum26/05/1331/05/13

Fingerprint

Untersuchen Sie die Forschungsthemen von „The neurogram matching similarity index (NMSI) for the assessment of similarities among neurograms“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren