The multivariate watson distribution: Maximum-likelihood estimation and other aspects

Suvrit Sra, Dmitrii Karp

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

50 Zitate (Scopus)

Abstract

This paper studies fundamental aspects of modelling data using multivariate Watson distributions. Although these distributions are natural for modelling axially symmetric data (i.e., unit vectors where ±x are equivalent), for high-dimensions using them can be difficult-largely because for Watson distributions even basic tasks such as maximumlikelihood are numerically challenging. To tackle the numerical difficulties some approximations have been derived. But these are either grossly inaccurate in high-dimensions [K.V. Mardia, P. Jupp, Directional Statistics, second ed., John Wiley & Sons, 2000] or when reasonably accurate [A. Bijral, M. Breitenbach, G.Z. Grudic, Mixture of Watson distributions: a generative model for hyperspherical embeddings, in: Artificial Intelligence and Statistics, AISTATS 2007, 2007, pp. 35-42], they lack theoretical justification. We derive new approximations to the maximum-likelihood estimates; our approximations are theoretically welldefined, numerically accurate, and easy to compute. We build on our parameter estimation and discuss mixture-modelling with Watson distributions; here we uncover a hitherto unknown connection to the "diametrical clustering"algorithm of Dhillon et al. [I.S. Dhillon, E.M. Marcotte, U. Roshan, Diametrical clustering for identifying anticorrelated gene clusters, Bioinformatics 19 (13) (2003) 1612-1619].

OriginalspracheEnglisch
Seiten (von - bis)256-269
Seitenumfang14
FachzeitschriftJournal of Multivariate Analysis
Jahrgang114
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - 2013
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „The multivariate watson distribution: Maximum-likelihood estimation and other aspects“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren