The low area probing detector as a countermeasure against invasive attacks

Michael Weiner, Salvador Manich, Rosa Rodríguez-Montañés, Georg Sigl

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

33 Zitate (Scopus)

Abstract

— Microprobing allows intercepting data from on-chip wires as well as injecting faults into data or control lines. This makes it a commonly used attack technique against security-related semiconductors, such as smart card controllers. We present the low area probing detector (LAPD) as an efficient approach to detect microprobing. It compares delay differences between symmetric lines such as bus lines to detect timing asymmetries introduced by the capacitive load of a probe. Compared with state-of-the-art microprobing countermeasures from industry, such as shields or bus encryption, the area overhead is minimal and no delays are introduced; in contrast to probing detection schemes from academia, such as the probe attempt detector, no analog circuitry is needed. We show the Monte Carlo simulation results of mismatch variations as well as process, voltage, and temperature corners on a 65-nm technology and present a simple reliability optimization. Eventually, we show that the detection of state-of-the-art commercial microprobes is possible even under extreme conditions and the margin with respect to false positives is sufficient.

OriginalspracheEnglisch
Aufsatznummer8097013
Seiten (von - bis)392-403
Seitenumfang12
FachzeitschriftIEEE Transactions on Very Large Scale Integration (VLSI) Systems
Jahrgang26
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - Feb. 2018

Fingerprint

Untersuchen Sie die Forschungsthemen von „The low area probing detector as a countermeasure against invasive attacks“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren