The Lorentz process converges to a random flight process

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

87 Zitate (Scopus)

Abstract

The Lorentz process is the stochastic process defined by a particle moving, according to Newton's law of motion, through static scatterers distributed according to some probability measure in space. We consider the Boltzmann-Grad limit: The density of scatterers increases to infinity and at the same time the diameter of the scatterers decreases to zero in such a way that the mean free path of the particle is kept constant. We show that the Lorentz process converges in the weak*-topology of regular Borel measures on the paths space to some stochastic process. The limit process is Markovian if and only if the rescaled density of scatterers converges in probability to its mean. In that case the limit process is a (spatially inhomogeneous) random flight process.

OriginalspracheEnglisch
Seiten (von - bis)277-290
Seitenumfang14
FachzeitschriftCommunications in Mathematical Physics
Jahrgang60
Ausgabenummer3
DOIs
PublikationsstatusVeröffentlicht - Okt. 1978
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „The Lorentz process converges to a random flight process“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren