The INTERSPEECH 2018 computational paralinguistics challenge: Atypical & self-assessed affect, crying & Heart beats

Björn W. Schuller, Stefan Steidl, Anton Batliner, Peter B. Marschik, Harald Baumeister, Fengquan Dong, Simone Hantke, Florian B. Pokorny, Eva Maria Rathner, Katrin D. Bartl-Pokorny, Christa Einspieler, Dajie Zhang, Alice Baird, Shahin Amiriparian, Kun Qian, Zhao Ren, Maximilian Schmitt, Panagiotis Tzirakis, Stefanos Zafeiriou

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

105 Zitate (Scopus)

Abstract

The INTERSPEECH 2018 Computational Paralinguistics Challenge addresses four different problems for the first time in a research competition under well-defined conditions: In the Atypical Affect Sub-Challenge, four basic emotions annotated in the speech of handicapped subjects have to be classified; in the Self-Assessed Affect Sub-Challenge, valence scores given by the speakers themselves are used for a three-class classification problem; in the Crying Sub-Challenge, three types of infant vocalisations have to be told apart; and in the Heart Beats Sub-Challenge, three different types of heart beats have to be determined. We describe the Sub-Challenges, their conditions, and baseline feature extraction and classifiers, which include data-learnt (supervised) feature representations by end-to-end learning, the 'usual' ComParE and BoAW features, and deep unsupervised representation learning using the AUDEEP toolkit for the first time in the challenge series.

OriginalspracheEnglisch
Seiten (von - bis)122-126
Seitenumfang5
FachzeitschriftProceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
Jahrgang2018-September
DOIs
PublikationsstatusVeröffentlicht - 2018
Extern publiziertJa
Veranstaltung19th Annual Conference of the International Speech Communication, INTERSPEECH 2018 - Hyderabad, Indien
Dauer: 2 Sept. 20186 Sept. 2018

Fingerprint

Untersuchen Sie die Forschungsthemen von „The INTERSPEECH 2018 computational paralinguistics challenge: Atypical & self-assessed affect, crying & Heart beats“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren