TY - JOUR
T1 - The influence of water-saturation on the strength of volcanic rocks and the stability of lava domes
AU - Heap, Michael J.
AU - Harnett, Claire
AU - Farquharson, Jamie
AU - Baud, Patrick
AU - Rosas-Carbajal, Marina
AU - Komorowski, Jean Christophe
AU - Violay, Marie E.S.
AU - Gilg, H. Albert
AU - Reuschlé, Thierry
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2023/12
Y1 - 2023/12
N2 - The rocks forming a volcanic edifice or dome are typically saturated or partially-saturated with water. However, most experiments aimed at better understanding the mechanical behaviour of volcanic rocks have been performed on dry samples, and therefore most large-scale models designed to explore volcano stability have used parameters representative for dry rock. Here, we present a combined laboratory and modelling study in which we (1) quantified the influence of water-saturation on the mechanical behaviour of variably altered dome rocks from La Soufrière de Guadeloupe (Eastern Caribbean) and (2) used these new data to investigate the influence of water on dome stability. Our laboratory data show that the ratio of wet to dry uniaxial compressive strength (UCS) and Young's modulus are ∼0.30–0.95 and ∼0.10–1.00, respectively. In other words, the dome rocks were all mechanically weaker when water-saturated. Further, the ratio of wet to dry UCS decreased with increasing alteration (the wt% of secondary minerals in the rocks). Micromechanical modelling suggests that the observed water-weakening is the result of a decrease in fracture toughness (KIC) in the presence of water. The ratio of wet to dry KIC also decreases with increasing alteration, explaining why water-weakening increased as a function of alteration. To explore the influence of water-saturation on lava dome stability, we numerically generated lava domes in Particle Flow Code using the experimental data corresponding to unaltered and altered rock under dry conditions. The strength of the dome-forming rocks was then reduced to values corresponding to wet conditions. Our modelling shows that, although the stability of the unaltered dome was not influenced by water-saturation, larger displacements were observed for the wet altered dome. Additional simulations in which we modelled a buried alteration zone within an otherwise unaltered dome showed that higher displacements were observed when the dome was water-saturated. We conclude that (1) the water-saturation reduces the UCS and Young's modulus of volcanic rock, (2) larger decreases in UCS in the presence of water are observed for altered rocks, and (3) the stability of a dome can be compromised by the presence of water if the dome is altered, or contains an altered zone. These conclusions highlight that the degree of alteration and water-saturation should be mapped and monitored at active volcanoes worldwide, and that large-scale models should use values for water-saturated rocks when appropriate.
AB - The rocks forming a volcanic edifice or dome are typically saturated or partially-saturated with water. However, most experiments aimed at better understanding the mechanical behaviour of volcanic rocks have been performed on dry samples, and therefore most large-scale models designed to explore volcano stability have used parameters representative for dry rock. Here, we present a combined laboratory and modelling study in which we (1) quantified the influence of water-saturation on the mechanical behaviour of variably altered dome rocks from La Soufrière de Guadeloupe (Eastern Caribbean) and (2) used these new data to investigate the influence of water on dome stability. Our laboratory data show that the ratio of wet to dry uniaxial compressive strength (UCS) and Young's modulus are ∼0.30–0.95 and ∼0.10–1.00, respectively. In other words, the dome rocks were all mechanically weaker when water-saturated. Further, the ratio of wet to dry UCS decreased with increasing alteration (the wt% of secondary minerals in the rocks). Micromechanical modelling suggests that the observed water-weakening is the result of a decrease in fracture toughness (KIC) in the presence of water. The ratio of wet to dry KIC also decreases with increasing alteration, explaining why water-weakening increased as a function of alteration. To explore the influence of water-saturation on lava dome stability, we numerically generated lava domes in Particle Flow Code using the experimental data corresponding to unaltered and altered rock under dry conditions. The strength of the dome-forming rocks was then reduced to values corresponding to wet conditions. Our modelling shows that, although the stability of the unaltered dome was not influenced by water-saturation, larger displacements were observed for the wet altered dome. Additional simulations in which we modelled a buried alteration zone within an otherwise unaltered dome showed that higher displacements were observed when the dome was water-saturated. We conclude that (1) the water-saturation reduces the UCS and Young's modulus of volcanic rock, (2) larger decreases in UCS in the presence of water are observed for altered rocks, and (3) the stability of a dome can be compromised by the presence of water if the dome is altered, or contains an altered zone. These conclusions highlight that the degree of alteration and water-saturation should be mapped and monitored at active volcanoes worldwide, and that large-scale models should use values for water-saturated rocks when appropriate.
KW - Dome collapse
KW - Fracture toughness
KW - Hydrothermal alteration
KW - Uniaxial compressive strength
KW - Young's modulus
UR - http://www.scopus.com/inward/record.url?scp=85177619572&partnerID=8YFLogxK
U2 - 10.1016/j.jvolgeores.2023.107962
DO - 10.1016/j.jvolgeores.2023.107962
M3 - Article
AN - SCOPUS:85177619572
SN - 0377-0273
VL - 444
JO - Journal of Volcanology and Geothermal Research
JF - Journal of Volcanology and Geothermal Research
M1 - 107962
ER -