The Impact of Data on the Stability of Learning-Based Control

Armin Lederer, Alexandre Capone, Thomas Beckers, Jonas Umlauft, Sandra Hirche

Publikation: Beitrag in FachzeitschriftKonferenzartikelBegutachtung

9 Zitate (Scopus)

Abstract

Despite the existence of formal guarantees for learning-based control approaches, the relationship between data and control performance is still poorly understood. In this paper, we propose a Lyapunov-based measure for quantifying the impact of data on the certifiable control performance. By modeling unknown system dynamics through Gaussian processes, we can determine the interrelation between model uncertainty and satisfaction of stability conditions. This allows us to directly asses the impact of data on the provable stationary control performance, and thereby the value of the data for the closed-loop system performance. Our approach is applicable to a wide variety of unknown nonlinear systems that are to be controlled by a generic learning-based control law, and the results obtained in numerical simulations indicate the efficacy of the proposed measure.

OriginalspracheEnglisch
Seiten (von - bis)623-635
Seitenumfang13
FachzeitschriftProceedings of Machine Learning Research
Jahrgang144
PublikationsstatusVeröffentlicht - 2021
Veranstaltung3rd Annual Conference on Learning for Dynamics and Control, L4DC 2021 - Virtual, Online, Schweiz
Dauer: 7 Juni 20218 Juni 2021

Fingerprint

Untersuchen Sie die Forschungsthemen von „The Impact of Data on the Stability of Learning-Based Control“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren