The evaluation of feature extraction criteria applied to neural network classifiers

W. Utschick, P. Nachbar, C. Knobloch, A. Schuler, J. A. Nossek

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

5 Zitate (Scopus)

Abstract

Feature extraction is a crucial part of classijicationprocedures. In this paper we present an approach, how to utilize feature extraction criteria to predict the potential efficiency of a neural network classijiel: Statistical and geometrical criteria are introduced for analysis. The complete system of our research consists of a class of generalized Hough-Transformations for feature extraction and a subsequent neural network. The neural network performs the classijication based on respective features. For an example we concentrated on a pattern recognition problem - The classijication of handwritten numerals. As a result of our work we assign two feature extraction criteria to the employed network for a significant estimation of its eflciency.

OriginalspracheEnglisch
TitelProceedings of the 3rd International Conference on Document Analysis and Recognition, ICDAR 1995
Herausgeber (Verlag)IEEE Computer Society
Seiten315-318
Seitenumfang4
ISBN (elektronisch)0818671289
DOIs
PublikationsstatusVeröffentlicht - 1995
Veranstaltung3rd International Conference on Document Analysis and Recognition, ICDAR 1995 - Montreal, Kanada
Dauer: 14 Aug. 199516 Aug. 1995

Publikationsreihe

NameProceedings of the International Conference on Document Analysis and Recognition, ICDAR
Band1
ISSN (Print)1520-5363

Konferenz

Konferenz3rd International Conference on Document Analysis and Recognition, ICDAR 1995
Land/GebietKanada
OrtMontreal
Zeitraum14/08/9516/08/95

Fingerprint

Untersuchen Sie die Forschungsthemen von „The evaluation of feature extraction criteria applied to neural network classifiers“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren