The developing Human Connectome Project (dHCP) automated resting-state functional processing framework for newborn infants

Sean P. Fitzgibbon, Samuel J. Harrison, Mark Jenkinson, Luke Baxter, Emma C. Robinson, Matteo Bastiani, Jelena Bozek, Vyacheslav Karolis, Lucilio Cordero Grande, Anthony N. Price, Emer Hughes, Antonios Makropoulos, Jonathan Passerat-Palmbach, Andreas Schuh, Jianliang Gao, Seyedeh Rezvan Farahibozorg, Jonathan O'Muircheartaigh, Judit Ciarrusta, Camilla O'Keeffe, Jakki BrandonTomoki Arichi, Daniel Rueckert, Joseph V. Hajnal, A. David Edwards, Stephen M. Smith, Eugene Duff, Jesper Andersson

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

53 Zitate (Scopus)

Abstract

The developing Human Connectome Project (dHCP) aims to create a detailed 4-dimensional connectome of early life spanning 20–45 weeks post-menstrual age. This is being achieved through the acquisition of multi-modal MRI data from over 1000 in- and ex-utero subjects combined with the development of optimised pre-processing pipelines. In this paper we present an automated and robust pipeline to minimally pre-process highly confounded neonatal resting-state fMRI data, robustly, with low failure rates and high quality-assurance. The pipeline has been designed to specifically address the challenges that neonatal data presents including low and variable contrast and high levels of head motion. We provide a detailed description and evaluation of the pipeline which includes integrated slice-to-volume motion correction and dynamic susceptibility distortion correction, a robust multimodal registration approach, bespoke ICA-based denoising, and an automated QC framework. We assess these components on a large cohort of dHCP subjects and demonstrate that processing refinements integrated into the pipeline provide substantial reduction in movement related distortions, resulting in significant improvements in SNR, and detection of high quality RSNs from neonates.

OriginalspracheEnglisch
Aufsatznummer117303
FachzeitschriftNeuroImage
Jahrgang223
DOIs
PublikationsstatusVeröffentlicht - Dez. 2020
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „The developing Human Connectome Project (dHCP) automated resting-state functional processing framework for newborn infants“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren