The Atlas Benchmark: an Automated Evaluation Framework for Human Motion Prediction

Andrey Rudenko, Luigi Palmieri, Wanting Huang, Achim J. Lilienthal, Kai O. Arras

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

5 Zitate (Scopus)

Abstract

Human motion trajectory prediction, an essential task for autonomous systems in many domains, has been on the rise in recent years. With a multitude of new methods proposed by different communities, the lack of standardized benchmarks and objective comparisons is increasingly becoming a major limitation to assess progress and guide further research. Existing benchmarks are limited in their scope and flexibility to conduct relevant experiments and to account for contextual cues of agents and environments. In this paper we present Atlas, a benchmark to systematically evaluate human motion trajectory prediction algorithms in a unified framework. Atlas offers data preprocessing functions, hyperparameter optimization, comes with popular datasets and has the flexibility to setup and conduct underexplored yet relevant experiments to analyze a method's accuracy and robustness. In an example application of Atlas, we compare five popular model-and learning-based predictors and find that, when properly applied, early physics-based approaches are still remarkably competitive. Such results confirm the necessity of benchmarks like Atlas.

OriginalspracheEnglisch
TitelRO-MAN 2022 - 31st IEEE International Conference on Robot and Human Interactive Communication
UntertitelSocial, Asocial, and Antisocial Robots
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten636-643
Seitenumfang8
ISBN (elektronisch)9781728188591
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung31st IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2022 - Napoli, Italien
Dauer: 29 Aug. 20222 Sept. 2022

Publikationsreihe

NameRO-MAN 2022 - 31st IEEE International Conference on Robot and Human Interactive Communication: Social, Asocial, and Antisocial Robots

Konferenz

Konferenz31st IEEE International Conference on Robot and Human Interactive Communication, RO-MAN 2022
Land/GebietItalien
OrtNapoli
Zeitraum29/08/222/09/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „The Atlas Benchmark: an Automated Evaluation Framework for Human Motion Prediction“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren