THÖR: Human-Robot Navigation Data Collection and Accurate Motion Trajectories Dataset

Andrey Rudenko, Tomasz P. Kucner, Chittaranjan S. Swaminathan, Ravi T. Chadalavada, Kai O. Arras, Achim J. Lilienthal

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

58 Zitate (Scopus)

Abstract

Understanding human behavior is key for robots and intelligent systems that share a space with people. Accordingly, research that enables such systems to perceive, track, learn and predict human behavior as well as to plan and interact with humans has received increasing attention over the last years. The availability of large human motion datasets that contain relevant levels of difficulty is fundamental to this research. Existing datasets are often limited in terms of information content, annotation quality or variability of human behavior. In this article, we present THÖR, a new dataset with human motion trajectory and eye gaze data collected in an indoor environment with accurate ground truth for position, head orientation, gaze direction, social grouping, obstacles map and goal coordinates. THÖR also contains sensor data collected by a 3D lidar and involves a mobile robot navigating the space. We propose a set of metrics to quantitatively analyze motion trajectory datasets such as the average tracking duration, ground truth noise, curvature and speed variation of the trajectories. In comparison to prior art, our dataset has a larger variety in human motion behavior, is less noisy, and contains annotations at higher frequencies.

OriginalspracheEnglisch
Aufsatznummer8954833
Seiten (von - bis)676-682
Seitenumfang7
FachzeitschriftIEEE Robotics and Automation Letters
Jahrgang5
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - Apr. 2020
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „THÖR: Human-Robot Navigation Data Collection and Accurate Motion Trajectories Dataset“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren