Tensor-based approach for time-delay estimation

Bilal Hammoud, Felix Antreich, Josef A. Nossek, João Paulo C.L. Da Costa, André L.F. De Almeida

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

Multipath (ML) signals reflected from the surrounding objects of a Global Navigation Satellite Systems (GNSS) receiver lead to a bias in the time-delay estimation of the line-of-sight (LOS) signal. In several cases, this bias is reflected as errors in the pseudo-range estimation of the receiver. In this paper, we derive a tensor-based filtering approach using an antenna array and a compression method based on canonical components (CC) with a bank of signal matched correlators in order to mitigate multipath and to estimate the time-delay of the LOS signal of a GNSS satellite. First, we resort to multidimensional filtering based on the principal singular vectors of the multi-dimensional data. In order to separate highly correlated signal components in the multi-dimensional signal subspace methods like forward-backward averaging (FBA), spatial smoothing (SPS), and the recently developed expanded spatial smoothing (SPS-EXP) are applied. Afterwards, time-delay estimation of the LOS signal is performed with a simple interpolation based on the multi-dimensional filtered cross-correlation values of the bank of correlators. An advantage of such an approach is that no multidimensional nonlinear problems need to be solved and also no model order estimation is required.

OriginalspracheEnglisch
TitelWSA 2016 - 20th International ITG Workshop on Smart Antennas
Herausgeber (Verlag)VDE VERLAG GMBH
Seiten103-109
Seitenumfang7
ISBN (elektronisch)9783800741779
PublikationsstatusVeröffentlicht - 2019
Veranstaltung20th International ITG Workshop on Smart Antennas, WSA 2016 - Munich, Deutschland
Dauer: 9 März 201611 März 2016

Publikationsreihe

NameWSA 2016 - 20th International ITG Workshop on Smart Antennas

Konferenz

Konferenz20th International ITG Workshop on Smart Antennas, WSA 2016
Land/GebietDeutschland
OrtMunich
Zeitraum9/03/1611/03/16

Fingerprint

Untersuchen Sie die Forschungsthemen von „Tensor-based approach for time-delay estimation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren