Tendencies regarding the effect of emotional intensity in inter corpus phoneme-level speech emotion modelling

Bogdan Vlasenko, Bjorn Schuller, Andreas Wendemuth

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

As emotion recognition from speech has matured to a degree where it becomes suitable for real-life applications, it is time for developing techniques for matching different types of emotional data with multi-dimensional and categories-based annotations. The categorical approach is usually applied for acted 'full blown' emotions and multi-dimensional annotation is often preferred for spontaneous real life emotions. A particularly realistic task we consider in this contribution is cross-corpus emotion recognition and its evaluation. General and phoneme-level emotional models on acted and spontaneous emotions ('very intense' and 'intense') are used in our experimental study. The emotional models were trained on spontaneous emotions from the complete VAM dataset and subsets with variable emotional intensities and evaluated on acted emotions from the Berlin EMO-DB dataset. We observe a significant classification performance gap for general models trained on very intense spontaneous emotions. As a consequence, we address the importance of collecting large corpora with very intense emotional content for training more reliable phoneme-level emotional models.

OriginalspracheEnglisch
Titel2016 IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2016 - Proceedings
Redakteure/-innenKostas Diamantaras, Aurelio Uncini, Francesco A. N. Palmieri, Jan Larsen
Herausgeber (Verlag)IEEE Computer Society
ISBN (elektronisch)9781509007462
DOIs
PublikationsstatusVeröffentlicht - 8 Nov. 2016
Extern publiziertJa
Veranstaltung26th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2016 - Proceedings - Vietri sul Mare, Salerno, Italien
Dauer: 13 Sept. 201616 Sept. 2016

Publikationsreihe

NameIEEE International Workshop on Machine Learning for Signal Processing, MLSP
Band2016-November
ISSN (Print)2161-0363
ISSN (elektronisch)2161-0371

Konferenz

Konferenz26th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2016 - Proceedings
Land/GebietItalien
OrtVietri sul Mare, Salerno
Zeitraum13/09/1616/09/16

Fingerprint

Untersuchen Sie die Forschungsthemen von „Tendencies regarding the effect of emotional intensity in inter corpus phoneme-level speech emotion modelling“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren