Task-adaptive physical reservoir computing

Oscar Lee, Tianyi Wei, Kilian D. Stenning, Jack C. Gartside, Dan Prestwood, Shinichiro Seki, Aisha Aqeel, Kosuke Karube, Naoya Kanazawa, Yasujiro Taguchi, Christian Back, Yoshinori Tokura, Will R. Branford, Hidekazu Kurebayashi

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

19 Zitate (Scopus)

Abstract

Reservoir computing is a neuromorphic architecture that may offer viable solutions to the growing energy costs of machine learning. In software-based machine learning, computing performance can be readily reconfigured to suit different computational tasks by tuning hyperparameters. This critical functionality is missing in ‘physical’ reservoir computing schemes that exploit nonlinear and history-dependent responses of physical systems for data processing. Here we overcome this issue with a ‘task-adaptive’ approach to physical reservoir computing. By leveraging a thermodynamical phase space to reconfigure key reservoir properties, we optimize computational performance across a diverse task set. We use the spin-wave spectra of the chiral magnet Cu2OSeO3 that hosts skyrmion, conical and helical magnetic phases, providing on-demand access to different computational reservoir responses. The task-adaptive approach is applicable to a wide variety of physical systems, which we show in other chiral magnets via above (and near) room-temperature demonstrations in Co8.5Zn8.5Mn3 (and FeGe).

OriginalspracheEnglisch
Seiten (von - bis)79-87
Seitenumfang9
FachzeitschriftNature Materials
Jahrgang23
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - Jan. 2024

Fingerprint

Untersuchen Sie die Forschungsthemen von „Task-adaptive physical reservoir computing“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren