Targetless Extrinsic Calibration Between Event-Based and RGB Camera for Intelligent Transportation Systems

Christian Cres, Erik Schutz, Bare Luka Zagar, Alois C. Knoll

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

The perception of Intelligent Transportation Systems is mainly based on conventional cameras. Event-based cameras have a high potential to increase detection performance in such sensor systems. Therefore, an extrinsic calibration between these sensors is required. Since a target-based method with a checkerboard on the highway is impractical, a targetless approach is necessary. To the best of our knowledge, no working approach for targetless extrinsic calibration between event-based and conventional cameras in the domain of ITS exists. To fill this knowledge gap, we provide a targetless approach for extrinsic calibration. Our algorithm finds correspondences of the detected motion between both sensors using deep learning-based instance segmentation and sparse optical flow. Then, it calculates the transformation. We were able to verify the effectiveness of our method during experiments. Furthermore, we are comparable to existing multicamera calibration methods. Our approach can be used for targetless extrinsic calibration between event-based and conventional cameras.

OriginalspracheEnglisch
TitelIV 2023 - IEEE Intelligent Vehicles Symposium, Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9798350346916
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung34th IEEE Intelligent Vehicles Symposium, IV 2023 - Anchorage, USA/Vereinigte Staaten
Dauer: 4 Juni 20237 Juni 2023

Publikationsreihe

NameIEEE Intelligent Vehicles Symposium, Proceedings
Band2023-June

Konferenz

Konferenz34th IEEE Intelligent Vehicles Symposium, IV 2023
Land/GebietUSA/Vereinigte Staaten
OrtAnchorage
Zeitraum4/06/237/06/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Targetless Extrinsic Calibration Between Event-Based and RGB Camera for Intelligent Transportation Systems“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren