TY - GEN
T1 - Tactile Exploration Using Unified Force-Impedance Control
AU - Karacan, Kübra
AU - Grover, Divij
AU - Sadeghian, Hamid
AU - Wu, Fan
AU - Haddadin, Sami
N1 - Publisher Copyright:
Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
PY - 2023/7/1
Y1 - 2023/7/1
N2 - Tactile robots can perform complex interaction skills, e.g., polishing. Such robots should therefore be designed to be adaptive to environmental uncertainties such as changing geometry and contact-loss. To address this, we propose a tactile exploration technique to observe the local curvatures of the physical constraints such as corners, edges, etc. for updating predefined tactile skill policies accordingly. First, we develop a unified force-impedance control approach in which the force controller significantly improves the geometry following performance due to the ensured contact. Second, we use the proposed controller to autonomously investigate the unknown environment via the local curvature observer, designed to be a dynamic process. Finally, the exploration performance of the proposed controller is demonstrated by using a polishing skill on an unknown 3D surface, where the robot is observed to autonomously investigate the unknown surface from top to bottom along the edges and corners.
AB - Tactile robots can perform complex interaction skills, e.g., polishing. Such robots should therefore be designed to be adaptive to environmental uncertainties such as changing geometry and contact-loss. To address this, we propose a tactile exploration technique to observe the local curvatures of the physical constraints such as corners, edges, etc. for updating predefined tactile skill policies accordingly. First, we develop a unified force-impedance control approach in which the force controller significantly improves the geometry following performance due to the ensured contact. Second, we use the proposed controller to autonomously investigate the unknown environment via the local curvature observer, designed to be a dynamic process. Finally, the exploration performance of the proposed controller is demonstrated by using a polishing skill on an unknown 3D surface, where the robot is observed to autonomously investigate the unknown surface from top to bottom along the edges and corners.
KW - Autonomous robotic systems
KW - Intelligent robotics
UR - http://www.scopus.com/inward/record.url?scp=85183609884&partnerID=8YFLogxK
U2 - 10.1016/j.ifacol.2023.10.1279
DO - 10.1016/j.ifacol.2023.10.1279
M3 - Conference contribution
AN - SCOPUS:85183609884
T3 - IFAC-PapersOnLine
SP - 5015
EP - 5020
BT - IFAC-PapersOnLine
A2 - Ishii, Hideaki
A2 - Ebihara, Yoshio
A2 - Imura, Jun-ichi
A2 - Yamakita, Masaki
PB - Elsevier B.V.
T2 - 22nd IFAC World Congress
Y2 - 9 July 2023 through 14 July 2023
ER -