Synthesizing Safety Controllers for Uncertain Linear Systems: A Direct Data-driven Approach

Bingzhuo Zhong, Majid Zamani, Marco Caccamo

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

5 Zitate (Scopus)

Abstract

In this paper, we provide a direct data-driven approach to synthesize safety controllers for unknown linear systems affected by unknown-but-bounded disturbances, in which identifying the unknown model is not required. First, we propose a notion of \gamma-robust safety invariant (\gamma-RSI) sets and their associated state-feedback controllers, which can be applied to enforce invariance properties. Then, we formulate a data-driven computation of these sets in terms of convex optimization problems with linear matrix inequalities (LMI) as constraints, which can be solved based on a finite number of data collected from a single input-state trajectory of the system. To show the effectiveness of the proposed approach, we apply our results to a 4-dimensional inverted pendulum.

OriginalspracheEnglisch
Titel2022 IEEE Conference on Control Technology and Applications, CCTA 2022
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten1278-1284
Seitenumfang7
ISBN (elektronisch)9781665473385
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung2022 IEEE Conference on Control Technology and Applications, CCTA 2022 - Trieste, Italien
Dauer: 23 Aug. 202225 Aug. 2022

Publikationsreihe

Name2022 IEEE Conference on Control Technology and Applications, CCTA 2022

Konferenz

Konferenz2022 IEEE Conference on Control Technology and Applications, CCTA 2022
Land/GebietItalien
OrtTrieste
Zeitraum23/08/2225/08/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Synthesizing Safety Controllers for Uncertain Linear Systems: A Direct Data-driven Approach“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren