Synthesizing Efficient Low-Precision Kernels

Anastasiia Izycheva, Eva Darulova, Helmut Seidl

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

4 Zitate (Scopus)

Abstract

In this paper, we present a fully automated approach for synthesizing fast numerical kernels with guaranteed error bounds. The kernels we target contain elementary functions such as sine and logarithm, which are widely used in scientific computing, embedded as well as machine-learning programs. However, standard library implementations of these functions are often overly accurate and therefore unnecessarily expensive. Our approach trades superfluous accuracy against performance by approximating elementary function calls by polynomials and by implementing arithmetic operations in low-precision fixed-point arithmetic. Our algorithm soundly distributes and guarantees an overall error budget specified by the user. The evaluation on benchmarks from different domains shows significant performance improvements of 2.23 $$\times $$ on average compared to state-of-the-art implementations of such kernel functions.

OriginalspracheEnglisch
TitelAutomated Technology for Verification and Analysis- 17th International Symposium, AVTA 2019, Proceedings
Redakteure/-innenYu-Fang Chen, Chih-Hong Cheng, Javier Esparza
Herausgeber (Verlag)Springer
Seiten294-313
Seitenumfang20
ISBN (Print)9783030317836
DOIs
PublikationsstatusVeröffentlicht - 2019
Veranstaltung17th International Symposium on Automated Technology for Verification and Analysis, ATVA 2019 - Taipei, Taiwan
Dauer: 28 Okt. 201931 Okt. 2019

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band11781 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz17th International Symposium on Automated Technology for Verification and Analysis, ATVA 2019
Land/GebietTaiwan
OrtTaipei
Zeitraum28/10/1931/10/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „Synthesizing Efficient Low-Precision Kernels“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren