Synthesising images and labels between mr sequence types with cycleGAN

Eric Kerfoot, Esther Puyol-Antón, Bram Ruijsink, Rina Ariga, Ernesto Zacur, Pablo Lamata, Julia Schnabel

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

7 Zitate (Scopus)

Abstract

Real-time (RT) sequences for cardiac magnetic resonance imaging (CMR) have recently been proposed as alternatives to standard cine CMR sequences for subjects unable to hold the breath or suffering from arrhythmia. RT image acquisitions during free breathing produce comparatively poor quality images, a trade-off necessary to achieve the high temporal resolution needed for RT imaging and hence are less suitable in the clinical assessment of cardiac function. We demonstrate the application of a CycleGAN architecture to train autoencoder networks for synthesising cine-like images from RT images and vice versa. Applying this conversion to real-time data produces clearer images with sharper distinctions between myocardial and surrounding tissues, giving clinicians a more precise means of visually inspecting subjects. Furthermore, applying the transformation to segmented cine data to produce pseudo-real-time images allows this label information to be transferred to the real-time image domain. We demonstrate the feasibility of this approach by training a U-net based architecture using these pseudo-real-time images which can effectively segment actual real-time images.

OriginalspracheEnglisch
TitelDomain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data First MICCAI Workshop, DART 2019 and First International Workshop, MIL3ID 2019 Shenzhen, Held in Conjunction with MICCAI 2019 Shenzhen, 2019 Proceedings
Redakteure/-innenQian Wang, Fausto Milletari, Nicola Rieke, Hien V. Nguyen, Badri Roysam, Shadi Albarqouni, M. Jorge Cardoso, Ziyue Xu, Konstantinos Kamnitsas, Vishal Patel, Steve Jiang, Kevin Zhou, Khoa Luu, Ngan Le
Herausgeber (Verlag)Springer
Seiten45-53
Seitenumfang9
ISBN (Print)9783030333904
DOIs
PublikationsstatusVeröffentlicht - 2019
Extern publiziertJa
Veranstaltung1st MICCAI Workshop on Domain Adaptation and Representation Transfer, DART 2019, and the 1st International Workshop on Medical Image Learning with Less Labels and Imperfect Data, MIL3ID 2019, held in conjunction with 22nd International Conference on Medical Image Computing and Computer- Assisted Intervention, MICCAI 2019 - Shenzhen, China
Dauer: 13 Okt. 201917 Okt. 2019

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band11795 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz1st MICCAI Workshop on Domain Adaptation and Representation Transfer, DART 2019, and the 1st International Workshop on Medical Image Learning with Less Labels and Imperfect Data, MIL3ID 2019, held in conjunction with 22nd International Conference on Medical Image Computing and Computer- Assisted Intervention, MICCAI 2019
Land/GebietChina
OrtShenzhen
Zeitraum13/10/1917/10/19

Fingerprint

Untersuchen Sie die Forschungsthemen von „Synthesising images and labels between mr sequence types with cycleGAN“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren