Abstract
The 3-body problem in R4 has 24 dimensions and is invariant under translations and rotations. We do the full symplectic symmetry reduction and obtain a reduced Hamiltonian in local symplectic coordinates on a reduced phase space with 8 dimensions. The Hamiltonian depends on two parameters Âμ 1 Âμ 2 ≥ 0, related to the conserved angular momentum. The limit Âμ 2 ! 0 corresponds to the 3-dimensional limit. We show that the reduced Hamiltonian has three relative equilibria that are local minima and hence Lyapunov stable when Âμ 2 is sufficiently small. This proves the existence of balls of initial conditions of full dimension that do not contain any orbits that are unbounded.
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 377-394 |
Seitenumfang | 18 |
Fachzeitschrift | Journal of Geometric Mechanics |
Jahrgang | 12 |
Ausgabenummer | 3 |
DOIs | |
Publikationsstatus | Veröffentlicht - Sept. 2020 |