SYMMETRY REDUCTION of the 3-BODY PROBLEM in R4

Holger R. Dullin, Jürgen Scheurle

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

1 Zitat (Scopus)

Abstract

The 3-body problem in R4 has 24 dimensions and is invariant under translations and rotations. We do the full symplectic symmetry reduction and obtain a reduced Hamiltonian in local symplectic coordinates on a reduced phase space with 8 dimensions. The Hamiltonian depends on two parameters Âμ 1 Âμ 2 ≥ 0, related to the conserved angular momentum. The limit Âμ 2 ! 0 corresponds to the 3-dimensional limit. We show that the reduced Hamiltonian has three relative equilibria that are local minima and hence Lyapunov stable when Âμ 2 is sufficiently small. This proves the existence of balls of initial conditions of full dimension that do not contain any orbits that are unbounded.

OriginalspracheEnglisch
Seiten (von - bis)377-394
Seitenumfang18
FachzeitschriftJournal of Geometric Mechanics
Jahrgang12
Ausgabenummer3
DOIs
PublikationsstatusVeröffentlicht - Sept. 2020

Fingerprint

Untersuchen Sie die Forschungsthemen von „SYMMETRY REDUCTION of the 3-BODY PROBLEM in R4“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren