Symmetry-adapted decomposition of tensor operators and the visualization of coupled spin systems

David Leiner, Robert Zeier, Steffen J. Glaser

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

4 Zitate (Scopus)

Abstract

We study the representation and visualization of finite-dimensional, coupled quantum systems. To establish a generalizedWigner representation, multi-spin operators are decomposed into a symmetry-adapted tensor basis and are mapped to multiple spherical plots that are each assembled from linear combinations of spherical harmonics. We explicitly determine the corresponding symmetryadapted tensor basis for up to six coupled spins 1/2 (qubits) using a first step that relies on a Clebsch-Gordan decomposition and a second step which is implemented with two different approaches based on explicit projection operators and coefficients of fractional parentage. The approach based on explicit projection operators is currently only applicable for up to four spins 1/2. The resulting generalized Wigner representation is illustrated with various examples for the cases of four to six coupled spins 1/2.We also treat the case of two coupled spins with arbitrary spin numbers (qudits) not necessarily equal to 1/2 and highlight a quantum system of a spin 1/2 coupled to a spin 1 (qutrit). Our work offers a much more detailed understanding of the symmetries appearing in coupled quantum systems.

OriginalspracheEnglisch
Aufsatznummer495301
FachzeitschriftJournal of Physics A: Mathematical and Theoretical
Jahrgang53
Ausgabenummer49
DOIs
PublikationsstatusVeröffentlicht - 17 Nov. 2020

Fingerprint

Untersuchen Sie die Forschungsthemen von „Symmetry-adapted decomposition of tensor operators and the visualization of coupled spin systems“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren