Symmetric powers of modular representations, Hilbert series and degree bounds

Ian Hughes, Gregor Kemper

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

35 Zitate (Scopus)

Abstract

Let G = Zp be a cyclic group of prime order p with a representation G → GL(V) over a field K of characteristic p. In 1976, Almkvist and Fossum gave formulas for the decomposition of the symmetric powers of V in the case that V is indecomposable. From these they derived formulas for the Hubert series of the invariant ring K[V]G. Following Almkvist and Fossum in broad outline, we start by giving a shorter, self-contained proof of their results. We extend their work to modules which are not necessarily indecomposable. We also obtain formulas which give generating functions encoding the decompositions of all symmetric powers of V into indecomposables. Our results generalize to groups of the type Zp x H with |H| coprime to p. Moreover, we prove that for any finite group G whose order is divisible by p but not by p2, the invariant ring K[V]G is generated by homogeneous invariants of degrees at most dim(V). (|G|-1).

OriginalspracheEnglisch
Seiten (von - bis)2059-2088
Seitenumfang30
FachzeitschriftCommunications in Algebra
Jahrgang28
Ausgabenummer4
DOIs
PublikationsstatusVeröffentlicht - 2000
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „Symmetric powers of modular representations, Hilbert series and degree bounds“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren