Switching linear dynamic models for noise robust in-car speech recognition

Björn Schuller, Martin Wöllmer, Tobias Moosmayr, Günther Ruske, Gerhard Rigoll

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

2 Zitate (Scopus)

Abstract

Performance of speech recognition systems strongly degrades in the presence of background noise, like the driving noise in the interior of a car. We compare two different Kalman filtering approaches which attempt to improve noise robustness: Switching Linear Dynamic Models (SLDM) and Autoregressive Switching Linear Dynamical Systems (AR-SLDS). Unlike previous works which are restricted on considering white noise, we evaluate the modeling concepts in a noisy speech recognition task where also colored noise produced through different driving conditions and car types is taken into account. Thereby we demonstrate that speech enhancement based on Kalman filtering prevails over all standard de-noising techniques considered herein, such as Wiener filtering, Histogram Equalization, and Unsupervised Spectral Subtraction.

OriginalspracheEnglisch
TitelPattern Recognition - 30th DAGM Symposium, Proceedings
Seiten244-253
Seitenumfang10
DOIs
PublikationsstatusVeröffentlicht - 2008
Veranstaltung30th DAGM Symposium on Pattern Recognition - Munich, Deutschland
Dauer: 10 Juni 200813 Juni 2008

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band5096 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz30th DAGM Symposium on Pattern Recognition
Land/GebietDeutschland
OrtMunich
Zeitraum10/06/0813/06/08

Fingerprint

Untersuchen Sie die Forschungsthemen von „Switching linear dynamic models for noise robust in-car speech recognition“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren