Surrogate model benchmark for kω-SST RANS turbulence closure coefficients

Philipp Schlichter, Michaela Reck, Jutta Pieringer, Thomas Indinger

Publikation: Beitrag in FachzeitschriftArtikelBegutachtung

2 Zitate (Scopus)

Abstract

AI-based methods show immense potential to assist engineers in further improving vehicle aerodynamics. It is vital to assess the performance of different surrogate models based on the provided training data size and shape to aid future model selections. This study uses data from the simulated flow around the 2D NACA 8810 airfoil. The closure coefficients of the kω-SST RANS turbulence model are varied by Design of Experiment to achieve the desired amount of varying data for the training and validation datasets. Each dataset uses Principal Component Analysis to generate various levels of dimensional reduction.

OriginalspracheEnglisch
Aufsatznummer105678
FachzeitschriftJournal of Wind Engineering and Industrial Aerodynamics
Jahrgang246
DOIs
PublikationsstatusVeröffentlicht - März 2024

Fingerprint

Untersuchen Sie die Forschungsthemen von „Surrogate model benchmark for kω-SST RANS turbulence closure coefficients“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren