Surgical data processing for smart intraoperative assistance systems

Ralf Stauder, Daniel Ostler, Thomas Vogel, DIrk Wilhelm, Sebastian Koller, Michael Kranzfelder, Nassir Navab

Publikation: Beitrag in FachzeitschriftÜbersichtsartikelBegutachtung

12 Zitate (Scopus)

Abstract

Different components of the newly defined field of surgical data science have been under research at our groups for more than a decade now. In this paper, we describe our sensor-driven approaches to workflow recognition without the need for explicit models, and our current aim is to apply this knowledge to enable context-aware surgical assistance systems, such as a unified surgical display and robotic assistance systems. The methods we evaluated over time include dynamic time warping, hidden Markov models, random forests, and recently deep neural networks, specifically convolutional neural networks.

OriginalspracheEnglisch
Seiten (von - bis)145-152
Seitenumfang8
FachzeitschriftInnovative Surgical Sciences
Jahrgang2
Ausgabenummer3
DOIs
PublikationsstatusVeröffentlicht - 1 Sept. 2020

Fingerprint

Untersuchen Sie die Forschungsthemen von „Surgical data processing for smart intraoperative assistance systems“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren