TY - JOUR
T1 - Suppression of IAPP fibrillation at anionic lipid membranes via IAPP-derived amyloid inhibitors and insulin
AU - Sellin, Daniel
AU - Yan, Li Mei
AU - Kapurniotu, Aphrodite
AU - Winter, Roland
N1 - Funding Information:
Financial support from the Deutsche Forschungsgemeinschaft to AK and RW is gratefully acknowledged. We thank Marianna-Tatarek-Nossol for HPLC purifications of the hIAPP-derived inhibitors and rIAPP and Erika Andreetto for synthesis of IAPP-GI and rIAPP.
PY - 2010/8
Y1 - 2010/8
N2 - Aggregation of human islet amyloid polypeptide (hIAPP) into cytotoxic β-sheet oligomers and amyloid plaques is considered a key event in pancreatic β-cell degeneration in type 2 diabetes (T2D). hIAPP is synthesized in the pancreatic β-cells and it is stored, co-processed in the secretory granules, and co-secreted to the extracellular matrix together with insulin. In vivo, hIAPP aggregation may start and proceed at the water-cell membrane interface and anionic lipid membranes strongly enhance the process of hIAPP fibrillization which is causally linked to membrane disintegration and cell degeneration. In this study we explored the amyloidogenic propensity and conformational properties of hIAPP in the presence of negatively charged membrane (DOPC/DOPG phospholipid bilayers) surfaces upon addition of two recently designed potent hIAPP-derived inhibitors of hIAPP amyloidogenesis, the hexapeptide NF(N-Me)GA(N-Me)IL (NFGAIL-GI) and the 37-residue non-amyloidogenic hIAPP analog [(N-Me)G24, (N-Me)I26]-IAPP (IAPP-GI). For comparison, the effects of insulin, which is a natively occurring hIAPP aggregation inhibitor, rat IAPP (rIAPP), which is a natively non-amyloidogenic hIAPP analog, and the hIAPP amyloid core peptide hIAPP(22-27) or NFGAIL were also studied. The aim of our study was to test whether and how the above peptides which have been shown to completely block or suppress hIAPP amyloidogenesis in bulk solution in vitro would also affect these processes in the presence of lipid membranes. To this end, attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) was applied. We find that IAPP-GI, NFGAIL-GI, insulin, and rIAPP are potent inhibitors of hIAPP fibrillization. Importantly, our data also suggest that the hetero-complexes of IAPP-GI, rIAPP, and insulin with hIAPP although non-amyloidogenic per se are still able to adsorb at the lipid membrane. By contrast, in the presence of NFGAIL-GI, interaction of hIAPP with the lipid membrane is completely abolished, consistent with NFGAIL-GI mediated sequestration of hIAPP via hetero-complexation in the aqueous phase mainly accounting for the observed strong effect of NFGAIL-GI on hIAPP fibrillogenesis at the lipid membrane interface. Finally, our studies show that once hIAPP is fibrillized at the water-lipid membrane interface with fibrils being attached to the lipid membrane, it cannot be disaggregated by all above peptides.
AB - Aggregation of human islet amyloid polypeptide (hIAPP) into cytotoxic β-sheet oligomers and amyloid plaques is considered a key event in pancreatic β-cell degeneration in type 2 diabetes (T2D). hIAPP is synthesized in the pancreatic β-cells and it is stored, co-processed in the secretory granules, and co-secreted to the extracellular matrix together with insulin. In vivo, hIAPP aggregation may start and proceed at the water-cell membrane interface and anionic lipid membranes strongly enhance the process of hIAPP fibrillization which is causally linked to membrane disintegration and cell degeneration. In this study we explored the amyloidogenic propensity and conformational properties of hIAPP in the presence of negatively charged membrane (DOPC/DOPG phospholipid bilayers) surfaces upon addition of two recently designed potent hIAPP-derived inhibitors of hIAPP amyloidogenesis, the hexapeptide NF(N-Me)GA(N-Me)IL (NFGAIL-GI) and the 37-residue non-amyloidogenic hIAPP analog [(N-Me)G24, (N-Me)I26]-IAPP (IAPP-GI). For comparison, the effects of insulin, which is a natively occurring hIAPP aggregation inhibitor, rat IAPP (rIAPP), which is a natively non-amyloidogenic hIAPP analog, and the hIAPP amyloid core peptide hIAPP(22-27) or NFGAIL were also studied. The aim of our study was to test whether and how the above peptides which have been shown to completely block or suppress hIAPP amyloidogenesis in bulk solution in vitro would also affect these processes in the presence of lipid membranes. To this end, attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) was applied. We find that IAPP-GI, NFGAIL-GI, insulin, and rIAPP are potent inhibitors of hIAPP fibrillization. Importantly, our data also suggest that the hetero-complexes of IAPP-GI, rIAPP, and insulin with hIAPP although non-amyloidogenic per se are still able to adsorb at the lipid membrane. By contrast, in the presence of NFGAIL-GI, interaction of hIAPP with the lipid membrane is completely abolished, consistent with NFGAIL-GI mediated sequestration of hIAPP via hetero-complexation in the aqueous phase mainly accounting for the observed strong effect of NFGAIL-GI on hIAPP fibrillogenesis at the lipid membrane interface. Finally, our studies show that once hIAPP is fibrillized at the water-lipid membrane interface with fibrils being attached to the lipid membrane, it cannot be disaggregated by all above peptides.
KW - ATR-FTIR spectroscopy
KW - Amyloid
KW - Lipid bilayer
KW - Peptide inhibitors
KW - Protein aggregation
UR - http://www.scopus.com/inward/record.url?scp=77953710075&partnerID=8YFLogxK
U2 - 10.1016/j.bpc.2010.01.006
DO - 10.1016/j.bpc.2010.01.006
M3 - Article
C2 - 20153100
AN - SCOPUS:77953710075
SN - 0301-4622
VL - 150
SP - 73
EP - 79
JO - Biophysical Chemistry
JF - Biophysical Chemistry
IS - 1-3
ER -