SupeRVol: Super-Resolution Shape and Reflectance Estimation in Inverse Volume Rendering

Mohammed Brahimi, Bjoern Haefner, Tarun Yenamandra, Bastian Goldluecke, Daniel Cremers

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

Abstract

We propose an end-to-end inverse rendering pipeline called SupeRVol that allows us to recover 3D shape and material parameters from a set of color images in a superresolution manner. To this end, we represent both the bidirectional reflectance distribution function's (BRDF) parameters and the signed distance function (SDF) by multi-layer perceptrons (MLPs). In order to obtain both the surface shape and its reflectance properties, we revert to a differentiable volume renderer with a physically based illumination model that allows us to decouple reflectance and lighting. This physical model takes into account the effect of the camera's point spread function thereby enabling a reconstruction of shape and material in a super-resolution quality. Experimental validation confirms that SupeRVol achieves state of the art performance in terms of inverse rendering quality. It generates reconstructions that are sharper than the individual input images, making this method ideally suited for 3D modeling from low-resolution imagery.

OriginalspracheEnglisch
TitelProceedings - 2024 IEEE Winter Conference on Applications of Computer Vision, WACV 2024
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
Seiten3127-3137
Seitenumfang11
ISBN (elektronisch)9798350318920
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung2024 IEEE Winter Conference on Applications of Computer Vision, WACV 2024 - Waikoloa, USA/Vereinigte Staaten
Dauer: 4 Jan. 20248 Jan. 2024

Publikationsreihe

NameProceedings - 2024 IEEE Winter Conference on Applications of Computer Vision, WACV 2024

Konferenz

Konferenz2024 IEEE Winter Conference on Applications of Computer Vision, WACV 2024
Land/GebietUSA/Vereinigte Staaten
OrtWaikoloa
Zeitraum4/01/248/01/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „SupeRVol: Super-Resolution Shape and Reflectance Estimation in Inverse Volume Rendering“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren