Super-Resolution for Gas Distribution Mapping: Convolutional Encoder-Decoder Network

Nicolas P. Winkler, Haruka Matsukura, Patrick P. Neumann, Erik Schaffernicht, Hiroshi Ishida, Achim J. Lilienthal

Publikation: Beitrag in Buch/Bericht/KonferenzbandKonferenzbeitragBegutachtung

5 Zitate (Scopus)

Abstract

Gas distribution mapping is important to have an accurate understanding of gas concentration levels in hazardous environments. A major problem is that in-situ gas sensors are only able to measure concentrations at their specific location. The gas distribution in-between the sampling locations must therefore be modeled. In this research, we interpret the task of spatial interpolation between sparsely distributed sensors as a task of enhancing an image's resolution, namely super-resolution. Because auto encoders are proven to perform well for this super-resolution task, we trained a convolutional encoder-decoder neural network to map the gas distribution over a spatially sparse sensor network. Due to the difficulty to collect real-world gas distribution data and missing ground truth, we used synthetic data generated with a gas distribution simulator for training and evaluation of the model. Our results show that the neural network was able to learn the behavior of gas plumes and outperforms simpler interpolation techniques.

OriginalspracheEnglisch
TitelInternational Symposium on Olfaction and Electronic Nose, ISOEN 2022 - Proceedings
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers Inc.
ISBN (elektronisch)9781665458603
DOIs
PublikationsstatusVeröffentlicht - 2022
Extern publiziertJa
Veranstaltung2022 IEEE International Symposium on Olfaction and Electronic Nose, ISOEN 2022 - Aveiro, Portugal
Dauer: 29 Mai 20221 Juni 2022

Publikationsreihe

NameInternational Symposium on Olfaction and Electronic Nose, ISOEN 2022 - Proceedings

Konferenz

Konferenz2022 IEEE International Symposium on Olfaction and Electronic Nose, ISOEN 2022
Land/GebietPortugal
OrtAveiro
Zeitraum29/05/221/06/22

Fingerprint

Untersuchen Sie die Forschungsthemen von „Super-Resolution for Gas Distribution Mapping: Convolutional Encoder-Decoder Network“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren